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III.1 Time continuous filtering

Framework :

s(t) is a time continuous signal (' electrical tension)

s(t) is real-valued
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III.1.a Time continuous filtering : filtering using electronic circuit

Combination of electronic resistance and elecctronic
capacitor leads to

aN
dNv(t)

dtN +. . .+a1
dv(t)

dt +a0v(t) = bM
dMu(t)

dtM +. . .+b1
du(t)

dt +b0u(t)

where
u(t) is the input voltage
v(t) is the output voltage

and the {an]0≤n≤N and {bm]0≤m≤M are reals
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III.1.a Time continuous filtering : filtering using electronic circuit

After Fourier transform

aN
dNv(t)

dtN +. . .+a1
dv(t)

dt +a0v(t) = bM
dMu(t)

dtM +. . .+b1
du(t)

dt +b0u(t)

gives

aN(iω)N v̂(ω) + . . .+ a1(iω)v̂(ω) + a0v̂(ω)
= bM(iω)M û(ω) + . . .+ b1(iω)û(ω) +b0û(ω)
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III.1.a Time continuous filtering : filtering using electronic circuit

And

aN(iω)N v̂(ω) + . . .+ a1(iω)v̂(ω) + a0v̂(ω)
= bM(iω)M û(ω) + . . .+ b1(iω)û(ω) +b0û(ω)

can be rewritten

v̂(ω)
N∑

n=0
an(iω)n = û(ω)

M∑
m=0

bn(iω)n
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III.1.a Time continuous filtering : filtering using electronic circuit

Consequently, the operator that associates u(t) (input) to v(t)
(output) such that

v̂(ω)
N∑

n=0
an(iω)n = û(ω)

M∑
m=0

bm(iω)n

is a time-invariant linear operator (i.e., a convolution) with an
impulsional response h(t) (i.e. the filter of the convolution) whose
Fourier transform is

ĥ(ω) = v̂(ω)
û(ω) =

∑N
n=0 an(iω)n∑M
m=0 bn(iω)n
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III.1.a Time continuous filtering : filtering using electronic circuit

The considered electronic circuit corresponds to a filter h(t)
defined by

ĥ(ω) =
∑M

m=0 bm(iω)m∑N
n=0 an(iω)n

which we can rewrite
ĥ(ω) = N(iω)

D(iω)
where N and D are two polynomials with real coefficients.
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III.1.b Time continuous filtering : Causality and Stability

N and D : polynomials with real coefficients :

ĥ(ω) = N(iω)
D(iω)

Theorem : The filter h(t) is causal and stable iff
(i) δN < δD
(ii) All the solutions of D(z) = 0 are such that <(z) < 0
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III.1.c Time continuous filtering : Filter design

The problem : How to design an electronic circuit which
corresponds to a fixed |ĥ(ω)|2 (we do not care about the phase) ?
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III.1.c Time continuous filtering : Filter design

Rephrasing the problem : We choose a positive-valued function
H(ω), and we want to find two polynomials N(z) and D(z) such
that

N and D have real coefficients
The filter N(iω)

D(ω) is causal and stable, i.e.,
(i) δN < δD
(ii) All the solutions of D(z) = 0 are such that <(z) < 0
One has

H(ω) = |N(iω)|2
|D(ω)|2
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III.1.c Time continuous filtering : Filter design

Theorem If a positive valued function H(ω) satisfies
H is a rationnal fraction in iω with real coefficients, of the
form

H(ω) = P(iω)
Q(iω)

with δP < δQ
The poles of H (i.e., the roots of Q(z)) are such that
<(z) 6= 0

Then we can design an electronic circuit corresponding to a (stable
and causal) filter h(t) such that

|ĥ(ω)|2 = H(ω)
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III.1.c Time continuous filtering : Filter design

Application The Butterworth low-pass filters hω0,n

|ĥω0,n(ω)|2 = Hn(ω) = 1
1 + (ω/ω0)2n
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III.1.c Time continuous filtering : Filter design

What about the phase ?

Linear phase filters
Minimum phase filters

E.Bacry Audio Signal Processing : I. Introduction - MVA 13



III.2 Time discrete filtering

Framework :

s[n] is a time-discrete signal (= sampling of an analog signal)

s[n] is real-valued
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III.2.a Time discrete filtering : Recursive filters (ARMA)

Causal filtering in discrete time :

h ∗ s[n] =
∑
k≥0

h[k]s[n − k]

We want to have a finite number of operations !

=⇒ we need to have h[k] to be compact support
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III.2.a Time discrete filtering : Recursive filters (ARMA)

Definition : A Moving Average filtering (MA)
f [n] (resp. g [n]) is the input (resp. output) signal
g [n] = h ∗ f [n]

g [n] =
M∑

k=0
bk f [n − k]

And in Fourier space

ĝ(eiω) = b̂(eiω)f̂ (eiω)
with

b̂(eiω) =
M∑

k=0
bke−iω

In that case, the filter h is simply given by

ĥ(eiω) = b̂(eiω)
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III.2.a Time discrete filtering : Recursive filters (ARMA)

A Moving Average filtering (MA)

g [n] = h ∗ f [n]

with

ĥ(eiω) = b̂(eiω) =
M∑

k=0
bke−kiω

This is a Finite-Impulse-Response (FIR) filter (i.e., b is compact
support).

=⇒ If we want to implement "sharp band filters, one need
large support which will induce ... long computations.
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III.2.a Time discrete filtering : Recursive filters (ARMA)

How could we implement a (causal)
Infinite-Impulse-Response (IIR) filter with a finite number of
operations ?
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III.2.a Time discrete filtering : Recursive filters (ARMA)

Definition : An Auto-Regressive filtering (AR)

f [n] (resp. g [n]) is the input (resp. output) signal
g [n] = h ∗ f [n]

g [n] = f [n]−
N∑

k=1
akg [n − k], with a0 = 1

or equivalently

N∑
k=0

akg [n − k] = f [n]

Then

ĥ(eiω) = 1
â(eiω) = 1∑N

k=0 ake−ikω
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III.2.a Time discrete filtering : Recursive filters (ARMA)

Definition : An Auto-Regressive filtering (AR)

g [n] = h ∗ f [n]

with

N∑
k=0

akg [n − k] = f [n]

And

ĥ(eiω) = 1
â(eiω) = 1∑N

k=0 ake−ikω

=⇒ h is an IIR filter that can be immplemented with a finite
number of operations !
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III.2.a Time discrete filtering : Recursive filters (ARMA)

Definition : An ARMA filter (= AR+MA)

g [n] = h ∗ f [n]

with

N∑
k=0

akg [n − k] =
M∑

k=0
bk f [n − k] with a0 = 1

Thus

ĥ(eiω) = b̂(eiω)
â(eiω) =

∑M
k=0 bke−ikω∑N
k=0 ake−ikω
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III.2.a Time discrete filtering : Recursive filters (ARMA)

An ARMA filter (= AR+MA)

ĥ(eiω) =
∑M

k=0 bke−ikω∑N
k=0 ake−ikω

Thus, the Z transform is

ĥ(Z ) =
∑M

k=0 bkZ−k∑N
k=0 akZ−k
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III.2.b Time discrete filtering : Stability and Causality of ARMA filters

Let’s remember that in general

h(Z ) =
∑

n
h[n]Z−n

and the convergence domain is a ring C = {Z , ρ1 < |Z | < ρ2}

Thus
Causality

ĥ(Z ) =
∑
n>0

h[n]Z−n

=⇒ The convergence domain is of the form C = {ρ1 < |Z |}
Stability ∑

n
|h[n]| < +∞

=⇒ The convergence domain is such that 1 ∈ C
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III.2.b Time discrete filtering : Stability and Causality of ARMA filters

An ARMA filter (= AR+MA)

ĥ(Z ) =
∑M

k=0 bkZ−k∑N
k=0 akZ−k

= N(Z )
D(Z )

where N and D are polynomials with real coefficients.

Thus
Causality : Always ! (by definition)
Stability : 1 ∈ C

=⇒ C is of the form C = {Z , |Z | > ρ} with ρ > 1
=⇒ the roots of D(Z ) = 0 verify Z < 1
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III.2.b Time discrete filtering : MA and CNN’s

A MA filter ' first layer of a 1D-CNN
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III.2.b Time discrete filtering : MA and CNN’s

A MA filter ' first layer of a 1D-CNN .. In Action !
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III.2.b Time discrete filtering : MA and CNN’s

A MA filter ' first layer of a 2D-CNN
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III.2.b Time discrete filtering : MA and CNN’s

A MA filter ' first layer of a 3D-CNN
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III.2.b Time discrete filtering : MA and CNN’s

A ARMA filter ' first layer of a SimpleRNN
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III.2.c Time discrete filtering : Filter design of an ARMA

The problem : How to design a discrete time filter which
corresponds to a fixed |ĥ(eiω)|2 (we do not care about the phase) ?
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III.2.c Time discrete filtering : Filter design of an ARMA

Theorem If a positive valued function H(eiω) satisfies
H is a rationnal fraction in eiω with real coefficients, of the
form

H(eiω) = P(eiω)
Q(eiω)

with δP < δQ
The poles of H(Z ) (i.e., the roots of Q(Z )) are such that
|Z | < 1 >

Then we can design a discrete time ARMA filter corresponding to
a (stable and causal) filter h[n] such that

|ĥ(eiω)|2 = H(eiω)
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III.3 Time discrete filtering : Second order cell

The simplest ("interesting") ARMA filter is an AR(2) :

ĥ(Z ) = b0
1 + a1Z−1 + a2Z−2

Thus There are two poles ρeiω0 and ρe−iω0

−→

this is an IIR band-pass filter !
ω0 the resonnance frequency
ρ allows to tune the band-width
b0 is the amplittude
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III.3 Time discrete filtering : Second order cell

A classical bandwidth filter AR(2) MA(2)

ĥ(Z ) = (Z − 1(Z + 1))
1 + a1Z−1 + a2Z−2
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III.3 Time discrete filtering : Second order cell

ĥ(Z ) = b0
1 + a1Z−1 + a2Z−2

=⇒ Interpolation of parameters is possible keeping stability !

Percussive sound synthesis
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III.4 Time discrete filtering : An efficient implementation of second order cells

Input : xN

Output : x0

x̂n−1(Z ) = −knZ−1ûn−1(Z ) + x̂n(Z )
ûn(Z ) = knx̂n−1(Z ) + Z−1ûn−1(Z )
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